Dirk Jan Boudeling
Cover Image

Today I would like to share an application story with you using mass flow meters in an application at Umicore in Suzhou (China). Umicore is one of the world’s leading producers of catalysts used in automotive emission systems. The company develops and manufactures high performing catalysts for, among other things, gasoline and diesel engines to transform pollutants into harmless gases, resulting in cleaner air.

Umicore’s production location in Suzhou ‘Umicore Technical Materials’ is using Bronkhorst Mass Flow Controllers and Vapour Systems for research and testing of automotive emission catalyst materials. Newly developed catalytically active materials of Umicore consist of oxides and precious metals, such as platinum and palladium, incorporated into a porous structure which allows intimate contact with the exhaust gas.

What catalyst materials does Umicore test?

Umicore in Suzhou uses various test benches in which newly developed catalytic materials are tested on performance (read: low output of toxic emissions). “Umicore develops new catalysts directly with top-tier automobile manufacturers in China. We are testing new formulations of materials and shapes of the catalysts on performance” explains Mr. Yang Jinliang.

Umicore project with Bronkhorst flow meters

How are the mass flow meters and controllers applied for identical testing and simulation?

The Bronkhorst mass flow meters and controllers are used to accurately deliver the right amount of several gases in a mixture that simulates the exhaust of an engine in different circumstances. “To really compare the performance of newly developed formulations, we have to be sure that the operational conditions of our tests are identical.” Mr. Yang explains that this requires the use of high performance mass flow controllers to accurately mix the simulated exhaust gas.

“We need flow control equipment which is reliable and has excellent repeatability during our simulation runs. Therefore Umicore developed the test equipment together with the Bronkhorst flow specialists.” Umicore runs various simulations. “We simulate exhaust gases of engines under various life cycle simulations and operating conditions. For example, the exhaust gas of the car is different if the engine is still cold or if the engine has a high number of revolutions.”

Test bench for ageing simulation

One special test bench of Umicore simulates the ageing of the catalyst materials. This has been achieved by heating the ambient temperature of the Catalyst up to 800° Celsius for a couple of hours up to 24 hours in a test run while adding the simulated exhaust gas. “Here the Bronkhorst instruments prove high stability under the harsh testing conditions,” says Mr. Yang.

Test bench for ageing simulation with flow meters

Exhaust gas simulation recipe

In order to simulate engine exhaust gas, Umicore mixes multiple gases. In general the following reactions take place in the catalytic converter:

1.Reduction of nitrogen oxides to nitrogen and oxygen: 2NOx → xO2 + N2

2.Oxidation of carbon monoxide to carbon dioxide: 2CO + O2 → 2CO2

3.Oxidation of unburnt hydrocarbons (HC) to carbon dioxide and water: CxH2x+2 + [(3x+1)/2]O2 → xCO2 + (x+1)H2O.

To mix these gases, EL-FLOW Select digital mass flow controllers are being used. In order to maintain the gas mix under the same pressure, an EL-PRESS pressure controller instrument is used to control the pressure simultaneously with the flow.

Exhaust gases of engines also contain evaporated H2O. For this purpose the Bronkhorst ‘Controlled Evaporation Mixer’ (CEM) is used. All digital mass flow controllers, pressure controller and the CEM are connected with a computer that runs a software program to control the instruments.

In the ageing simulation test-bench of Umicore, high-temperature mass flow controllers of Bronkhorst are applied. The Bronkhorst EL-FLOW Select controllers have remote electronics to resist gas temperatures as high as 110° Celsius and still control the gases with high accuracy and excellentrepeatability.

Mr Yang Umicore

How do you like the support of Bronkhorst products in China?

When asked about Bronkhorst support and service in China, Mr. Yang is very enthusiastic: “All Bronkhorst experts in China are very professional and have quick response. Especially during the start-up phase of our project, when we needed it most, my contacts were determined to support us. The system runs smoothly, but it’s comfortable to know that Bronkhorst is having one of its Global Service Offices in Shanghai if we need calibration or service.”

Bronkhorst Global Sales Office

• Learn more about another application in this market: Simulation of exhaust gas to test lambda probes. • Do you want to stay up-to-date with our new applications? Subscribe for our newsletter

James Walton
Cover Image

One of my favourite phrases is, ‘buy cheap, buy twice’. This is never more apparent than when purchasing new flow meters or looking at ways to protect existing ones if necessary. There are various accessories that you can add-on flow meters. With mass flow meters and controllers, the accessory of choice often is a communication cable, these are essential in allowing you to communicate with an instrument and see/access the very information that you purchased the instrument to make available. However, one accessory is often over-looked and can be far more essential to the long-term performance and life-time cost of running an instrument, especially in industrial applications; filters. In this blog I would like to share my ideas about filters, in particular the ones used for gas flow meters.

Why using filters for your mass flow meters?

This simple add-on to a new flow meter can protect against a multitude of issues like: • Debris from contaminated gas lines • Particles that exist in industrial gases • Small amounts of oil from compressors

Filters are especially useful in applications where you have to deal with ‘dirty’ gases, gases with particles. This can be the case in an industrial environment, but also in research applications.
You may think that in research applications you work with clean gases, but tiny particles can also occur here. Not only the particles in gases can be a problem, the dirt stored in the piping can be harmful as well.

By using filters you can filter the gas before entering the flow meter to make sure that the gas at the inlet of the instrument is clean. This way you avoid contamination which can lead to a number of avoidable costs. With avoidable costs I mean costs due to down-time, service costs, calibration costs and engineering time to remove and re-install the damaged instrument.

Inherent to its construction, a thermal mass flow meter or controller for gases is more or less sensitive to contamination. The thermal flow meters for gas can be divided into two sensor principles: • Gas flow meters using the bypass principle • Gas flow meters using the CTA principle (Constant Temperature Anemometry)

Thermal mass flow meters for gases – Bypass principle

If we look at flow meters using the ‘bypass’ principle, these instruments are more sensitive to contamination. In these instruments only part of the gas stream flows through the sensor (bypass), the rest will flow through the laminar flow element. This flow element - flow splitter - contains small discs with high-precisions flow channels. You can imagine that these channels may be clogged by contamination.

More information about the ‘bypass’ principle

Image description Bypass principle

Thermal mass flow meter for gases – CTA principle

Instead of the bypass principle, instruments can also be designed by the CTA principle, also called Constant Temperature Anemometry, inline principle or direct-through principle. This principle has no bypass sensor but has a ‘straight’ flow channel. This construction is less sensitive to humidity and contamination.

More information about the ‘CTA’ principle

Image description CTA (Constant Temperature Anemometry)

Contamination of mass flow meters

To increase the MTBF (Mean Time Between Failure) it is important to make sure that the gas or liquid entering the instrument is dry and clean, in particular when using flow instruments with a bypass sensor. Depending on your fluid you can select different types of filters.

Our mass flow meters and controllers are designed for low flows and therefore have delicate and finely machined parts. This is needed to enable us to quantify the flow rates of gases that we can achieve with a good level of accuracy and repeatability.

When you consider the potential damage that is possible from the different sources of contamination, and the delicate nature of the internal working of a mass flow controller, it would appear to be a very straightforward decision to include a filter in your next purchase of a Mass flow controller.

Filters for gas flow meters and controllers

For gas flow meters and controllers we have filters available which are placed in line with the instrument (our so called IN-LINE models). Filters are easy to use, you just screw them into the inlet of the flow instrument, and it guarantees a clean gas inlet. It contains a 316L sintered metal filter cartridge that is suitable for general purpose filtration and can be cleaned with either a suitable solvent or by replacing the cartridge if heavily soiled.

Image description Various filters

If the gas contains large particles, we advise the use of a pre-filter. This pre-filter is recommended because it will remove a high percentage of the heavy particles, as it has a cartridge with a larger porosity than the actual filter, before they reach the main filter and reduce pressure drop from clogging and excessive maintenance/cleaning requirements.

Discover our filter models on our website and select your filter accordingly!

In a previous article we have already mentioned the importance of filters when installing a mass flow meter.

“Ensure that the piping of the system is clean (before installing the instrument). For absolute cleanliness always install filters to ensure a moisture and oil-free gas stream. It is recommended to install an inline filter upstream of the mass flow meter or controller, and if back flow can occur, a downstream filter or check valve is recommended too”. Read more tips before installation in this blog: Top 10 tips for installation

Gerhard Bauhuis
Cover Image

The temperatures are sky high! All winter you've thought about going camping, travelling with your caravan and planning precious family trips. Finally now it’s the time to leave everything behind, and for a moment, forget the busy daily live and struggling at home. However, everywhere you go, Bronkhorst is travelling with you. Bronkhorst plays a role in many more applications than you think, also when you go camping. Let me guide you through some mainstream products you often see at a camping site, and the involvement of mass flow controllers.

Surface treatment

If you are travelling to your holiday destination by car, you will constantly look at some Bronkhorst solutions. Let’s start with the dashboard of your car. Many cars have a leather dashboard; at least, it looks like leather. A major company manufactures ‘skin’ that covers a car's dashboard, to give it this ‘leather look’. The skin is produced by spraying liquid, coloured polyurethane into a nickel mould. A Coriolis mass flow controller combined with a valve forms the basis of this solution to accurately supply external release agent to the nickel mould surface.

Coating of a dashboard But also the foam within the dashboard is manufactured by using Bronkhorst products. To create foam, a gas is added to a mixture, containing acrylonitrile-butadiene-styrene (ABS) or polyvinyl chloride (PVC), to give it the right volume. Too much gas will make the foam unstable, too little and you’ll get a heavy solid block. Therefore, it is utterly important that the correct amount of gas is added with an accurate gas flow controller.

Glass coating

If you look beyond your dashboard, you’ll look through the front window of your car. To control the light transmittance of glass, but also to make glass water repellent, protect it from mechanical and chemical stress, increase the scratch resistance and shatter protection, thermal mass flow controllers are used for the coating process. By controlling individually process gas flows, film thickness uniformity improvements are achieved.

Coating on headlights

When polycarbonate was introduced as a replacement for headlights glass in the early 1980s, new problems arised. Headlights are subject to a harsh environment. Due to the position in the front of a car, critical parameters for lifetime and performance are weather ability, scratches and abrasion. To protect headlights from these factors, scratch and abrasion coatings have been developed that are sprayed on the headlights with the help of robots in which Coriolis mass flow controllers control the flow to the spraying nozzles.

Hydrophobic coating

However, surface treatment is not only applicable for glass and dashboards. If you have experience with camping, you will be familiar with how fierce the summer weather sometimes can be. The awning of your caravan needs to be water repellent - this also applies to your raincoat - to sustain the heavy rainfall now and then. To make fabrics and textiles hydrophobic, Empa - a research institute of the ETH Domain, applies plasma polymerisation to deposit thin, nanoscale layers on top of fabrics and fibers. For this, they are using a Controlled Evaporation and Mixing system, in short a CEM system. In one of our previous blogs ‘Hydrophobic coating, the answer to exercising in the rain’ you can read about this application.

Image description Mass flow controllers are used to make awnings hydrophobic

Odoration

Bronkhorst is also involved with many smaller attributes you will encounter on a campingsite. Most people still enjoy the comfort of gas for heating or cooking on the stove. But also with gas we are able to fire up the barbecue in no time at all, in comparison with the old-fashioned briquettes that are sometimes hard to ignite. When gas escapes from a pressurized cylinder, you’ll recognize this from its penetrating scent. However, like Sandra Wassink stated in her blog “How mass flow controllers make our gas smell”, natural gas is odorless. By controlled supply of odorants like Tetrahydrothiophene (THT) or Mecaptan with a mass flow controller, the scent is added to the natural gas on purpose.

Barbecue

Let’s stay with the topic scent for a moment. For when we want to decrease the amount of mosquitos in our surroundings, we often enlight a citronella candle when we are getting tired of using the flyswatter. With the CORI-FILL dosing technology, Bronkhorst offers an easy-to-use setup to dose fragrances, like citronella, in candles. The addition of fragrance to a candle should be carefully monitored to ensure the candle burns cleanly and safely. To read in more detail about the production of scented candles, please read the blog of Graham Todd.

LED lighting

However a candle can bring much light to your surroundings, you won’t take a candle with you when you haste to the camping toilets at night. Instead you will use a flashlight of course. The working principle of the LED (Light Emitting Diode) inside this flashlight is a technology where Bronkhorst plays its part. LED works via the phenomenon called electroluminescence, which is the emission of light from a semiconductor (diode) under the influence of an electric field. By applying a semiconducting material like Gallium arsenide phosphide for instance, the manufacturing of red, orange and yellow light emitting diodes is possible.

Flashlight

I already told you so much, but frankly, just a tiny bit of all the camping applications we are involved at. Hopefully you got some more insights on the importance of Bronkhorst in many industries, also when you go camping.

If you want more information concerning the discussed applications, please contact us.

Want to stay up to date on new flow solutions? Would you like to receive every month the latest tips in your inbox?

Marlies
Cover Image

The automotive industry is the biggest industry in the world. Some quick facts: • Approximately 99 million motor vehicles are produced per year (source: European Automobile Manufacturers Association). • The world’s largest car-producing countries are China, Japan, Germany, India and South Korea (2017). • There is a large discrepancy in the average annual distance travelled by car between countries. In the US, this figure is around 21,500 km/year. In Europe, the average is 12,000 km/year (source: Odyssee). • On average, a car has 30,000 parts (source: Netstar). A lot of people go to their work and on holiday by car. I do as well. I use my car every day, but while driving to Ruurlo, I had never realised that the flow meters which we develop have been used to produce my car. Did you? Inspired by that realisation, I discovered that our flow meters play a role in a lot of applications in the automotive industry; probably not in all 30,000 parts, but for sure in some of them. I have therefore collected three interesting applications of flow meters in the automotive industry to share with you.

1. Accurate dosing of release agent

In its automotive department, a major company manufactures ‘skin’ that covers a car's dashboard to give it a ‘leather look’. This skin is produced by spraying liquid, coloured polyurethane into a nickel mould. To allow easy skin release from the mould without any damage, an external release agent has to be applied onto the mould surface prior to spraying the polyurethane. Bronkhorst was requested to supply a [suitable mass flow controller](http://www.bronkhorst.com/int/markets/miscellaneous-applications/application-note-a075-gp03-accurate-dosing-of-release-agent/ ) in order to dose this release agent.

Image description

2. Valve seat testing

Valve manufacturers check any metal-to-metal valve seats using pressure degradation methods. Since the new generation of car engines are running on higher pressures, the manufacturers are in need of new methods for leak testing to keep up with customer needs. Recently, Bronkhorst has been successfully involved with manufacturers of [valves and valve seat testing machines](http://www.bronkhorst.com/int/markets/miscellaneous-applications/application-note-a056-gp03-valve-seat-testing/ ) to implement low-flow measurement as an alternative method for a better performance.

Image description

3. Simulation of exhaust gas to test lambda probe

Each modern car with a combustion engine has a self-controlling way to optimise engine performance. A lambda probe, a sensor positioned in the exhaust section of the car, measures the oxygen content of the car exhaust gases. This oxygen content, the ‘lambda value’, is a measure for the effectiveness of the combustion process in a car’s engine. The research department of a car producer needs to test the performance of these lambda probes with several exhaust gas compositions. To this end, they built an artificial exhaust line in which they do not use real exhaust gas but simulate the composition of car exhaust gases. They asked Bronkhorst to deliver [mass flow controllers](http://www.bronkhorst.com/int/markets/miscellaneous-applications/application-note-a069-gp03-simulation-of-exhaust-gas-to-test-lambda-probe/ ) for this purpose.

Image description

Renewable energy in the automotive industry

Next to these applications at car manufacturers (or suppliers to the automotive industry), Bronkhorst instruments are also used by universities that join competitions or are doing research into renewable fuel sources for the automotive industry. For example, Green Team Twente is trying to build the most efficient hydrogen car. In this blog, they tell more about their research.

Image description

In addition, Solar Team Twente participates in the World Solar Challenge every two years. Participating teams are challenged to design a car that drives 3,000 kilometers from North to South Australia in a maximum of six days, purely on solar energy. Bronkhorst sponsors this team. Read more in our news article.

A third renewable energy source being researched is formic acid (Hydrozine). In her blog, Lotte Pleging of Team FAST explains why they believe in formic acid (HCOOH) as a suitable candidate to replace fossil fuels and what the role of the Bronkhorst thermal mass flow meters is in the process of generating this renewable fuel. Read more below.

Image description

Sources used:

http://www.odyssee-mure.eu/publications/efficiency-by-sector/transport/distance-travelled-by-car.html https://ceoworld.biz/2018/11/20/worlds-top-20-largest-passenger-car-producing-countries-in-2017-million-units/

Erwin Broekman (Br-NL)
Cover Image

Why do we all (at least most of us) like candy, soda, cookies and cake? All these products contain sugar which makes it taste real good. But where does this sugar come from? All green plants make sugar through photosynthesis. Of all plants, sugar beets and sugar cane contain the greatest quantities of sugar; that’s why we usually use these two plants to extract sugar. In this blog we focus on the processing of sugar beets and the role that Bronkhorst flow meters have in this process.

Convergence Industry B.V. is a supplier of customized measurement and control systems for liquids and gases. In the process of getting sugar from sugar beets one of the customers of Convergence discovered that by using membrane filtration, it was possible to extract more components out of the sugar beet than sugar alone. For this a customized lab scale system for nano filtration was used.

Membrane filtration

Membrane filtrations is a high-quality purification process using sophisticated techniques. How does this work? A simple explanation of membrane filtration is comparing it with making coffee. If you pour water in a coffee filter filled with coffee beans, you want coffee as a result without the shell of the coffee bean. That’s what the filter is for. On another level this is similar to water filtration where you want to filter the ions so you can make drinking water out of seawater. As simple as that!

Collaboration with Convergence for membrane filtration

For the membrane filtration a ‘Convergence inspector Colossus’can be used. This is a fully automated customized lab scale system for nano filtration which makes it interesting. Felix Broens (Chief Technology Officer of Convergence Industry B.V.) explains how this system works:

”The nanofiltration system is fed with water in which a phosphatefree anti scalant is dosed. Using a high pressure pump the system is pressurized, causing a part of the water to pass to the membrane (permeate). The part of the water that cannot pass through the membrane (retentate) is led back to where the water has been fed. An extra pump in the recirculation conduit causes a higher velocity across the surface of the membrane, which reduces pollution on the membrane itself. The permeate can eventually be used as clean water for different applications.”

“The anti scalant is used to prevent scaling on the membrane, by forming a complex of metal-containing ions, which keeps them in the retentate stream so that they can be led out of the system. Because of using a phosphate free and biodegradable anti scalant, it doesn’t have any harmful effects on the environment.”

Image description

Bronkhorst flow meters in membrane filtration

The heart of the nanofiltration system is a Bronkhorst Coriolis mass flow meter for controlling the process. It uses a Coriolis flow meter because it can measure density as well, which is important in case of sugary solutions. The flow meter is placed at the ‘clean’ side of the process, so behind the membrane where the permeate flow takes place (the purified product flow). The degree of separation of the membrane can be influenced by both flow speed and pressure. And thus a Coriolis flow meter with a wide range is the best option to cover a large test range.

Image description

This Convergence system has made it possible for their customer to improve their process enormously. Before using the Convergence system it was a manual process that was rather time consuming and not always accurate. Nowadays the whole process is automated using client-specific Convergence software which makes it possible to accurately control the Coriolis mass flow meter with the pump and therefore, the permeate flow can now be controlled accurately and fast. This results in a good reproducibility, reliability, datalogging and shorter lead times for the experiment compared to as it was before. This customized lab scale system makes it possible to generate a sufficient amount of residue for testing purposes without making it necessary to upscale the process to a pilot plant.

Check out the Coriolis flow meters available for this application: https://www.bronkhorst.com/int/products/liquid-flow/mini-cori-flow/

Contact Convergence for more information about membrane filtration https://www.con-vergence.com/

Nicolaus Dirscherl
Cover Image

Fish consumption is rising. With the increase of the world population and the need for nutritious food, health-conscious consumers are looking for alternatives to “a nice slice of meat”. And they end up eating more fish or vegetarian food.

Specific species of wild fish are getting more and more scarce in open water due to the huge impact of industrialised fishing fleets and overfishing. The sea can not provide the increasing demand. Fortunately, in a trend towards sustainable food production, fish farming is gaining increasingly interest.

Fish farming

Fish farming is the aquatic peer of farming cows, sheep or chicken. For many, many years, we as humans have been farming our main food - have it grown in greenhouses, in stables, or in the fields. Whatever we need, we try to fulfil our demand - more and more in a sustainable way, with respect for natural resources. Fish farming is heading in the same trend.

When people hear about fish farms, they might think of an aquarium, a little pond or a floating net. But in Norway, a major player in fish farming, people think on a larger scale. A typical fish cage near the Norwegian coast has a diameter of tens of meters containing 200,000 to 300,000 salmon. In the near future, these designs will upscale to 1 or 2 million salmon. Only in Norway, at the beginning of 2018 more than 3500 cages for fish farming were floating in the sea. And ‘Norway’ is expanding their knowledge and technology across the world, where people are interested in large scale harvesting of fish in the sea - or maybe also on land.

Image description

Salmon is a typical example of a fish that can be fish farmed. They need cold water - seven to nine degrees Celsius is what they like most - which is why this aquaculture is happening in the northern hemisphere, off-shore in the fjords. Moreover: salmon is a very popular fish, often found on the menu all around the world - so there is a high demand.

Aeration

In fish farming, aeration is literally of vital importance. In addition to food, the fish need oxygen that is supplied in the form of tiny air bubbles (‘aerated’) to the water. But aeration has more advantages.

Also in the early days, lice were a major disease that salmon suffered from. Since salmon lice had an impact on harvest, the fish farmers had to look for solutions. For some reason - maybe it was an experiment or it happened by accident - they started to purge air from the bottom of the cage. And they observed that the movement of the fish started to change. Instead of circling day in and day out - as salmon normally do - they started to move around the cage and became more agile. If the salmon are more agile, the muscles have to work more, and meat from moving animals has a better quality. At the same time, the fish farmers detected that aeration helped them to create a more thermal friendly water environment, with an advantageous temperature, conditions and amount of oxygen. With result that the occurrence of salmon lice reduced. So aeration had - and still has - two advantages: improving the salmon quality, and reducing the unwanted lice. By the way: the words purging and aeration have the same meaning. ‘Aeration’ has the word air inside.

Aeration of fish farms using mass flow controllers

The process of aeration is very simple - like in any aquarium you have at home - and yet can lead to very nice results as we saw above. The air bubbles can be generated by natural water currents (off-shore, down-hill), pumps, impellers, variable area flow meters or - as we do at Bronkhorst - by mass flow controllers and compressors. Here, a compressor generates compressed air from the surrounding atmosphere, and feeds this to the mass flow controller for controlled aeration of the water in the fish cages.

Image description

To run fish farms remotely controlled and without much manpower, as much automation as possible is required. This also involves automated feeding. When the fish are fed, the air purging needs to be interrupted to give the fish the opportunity to hunt for the food before it floats out of the cage. In between the feeding periods, the aeration improves the condition of the water and the salmon. Here, it helps that mass flow controllers are remotely controlled from the control room at land. The aeration is stopped when the feeding starts, and when the feeding is over, the previous set point will automatically return and the water condition is as stable as it was before.

But there is more: mass flow controllers provide a potential for saving energy due to better conditions in the cage. The accuracy of the devices is important here. Every cubic meter of air you save by being more accurate - faster control or opening of valves - is of direct influence to your costs for running the compressor. Moreover, in stormy weather you can reduce the aeration, but during a long dry period without water movement, more air bubbles are needed. So essentially, this accuracy and flexibility leads to a better controlled environment.

Image description

With MASS-STREAM mass flow controllers we have a robust instrument, which is performing well in the harsh northern surroundings. By Bronkhorst standards, this kind of aeration is a ‘high flow’. Typical air flows for a fish cage are in the range between 600 and 1400 liters per minute.

Mass flow controllers for other types of aeration

Mass flow controllers are suitable for other types of aeration - also again in aquaculture and agriculture. If you grow salmon, you need to breed the fish, which normally occurs on land. Fish eggs and young fish are even more vulnerable to changes, so the environment has to be more stable than for grown fish. Depending on the type of fish, the balance of oxygen in the water is delicate and has to be controlled accurately.

In algae farming, carbon dioxide gas is one of the food components for these species to grow, which needs to be supplied under defined conditions.

A very well-known application of aeration is in food & beverage industry. As you might know, every soda or carbonised drink is a liquid purged with carbon dioxide gas. Related to that: when packaging food, the packaging is purged with nitrogen to remove the oxygen before the food enters the packaging, as one of the steps to prolong the shelf life of the food.

“Fish farming with controlled aeration by mass flow controllers will support the focus on good fish quality, control of diseases and increase of the yield” according to Nicolaus Dirscherl, Managing Director of M+W Instruments GmbH.

For more information about the usage of mass flown controller in a fish farming application, please check our application story Aeration in Fish Farming.

Check out the products used in this application.