Cover Image

Having worked in both the Life Sciences and Analytical industries I am sympathetic to the ever increasing demands for small foot prints and faster instruments. It has been a continuing trend for many years that lab real-estate has become more and more expensive; this led to a drive for footprint reduction of instruments. You had to make sure that size didn’t make you expensive in bench space.

One of the drivers behind this process was the NeSSI system initiative (New Sampling/Sensor Initiative), sponsored by the Centre for Process Analysis and Control. The aim was to reduce the overall costs of engineering, installing and maintaining chemical process analytical systems.

In the NeSSI system, mass flow and pressure meters/controllers needed a standard footprint of 1.5’’.

This footprint is perfect for a large number of applications and end users, even for some of the Life Science OEM companies that have room to spare in their systems. However when you are re-designing your system and you have the chance to incorporate new technology, look at the placement of existing technology and maybe add more it helps if you can reduce the footprint of the components that you use even further.

Reducing the footprint of a known, working technology has challenges of its own. The design and function of which will be driven by the physical characteristics of the measurement principle and therefore the sensor that it uses. To change this you need to look at alternative measurement technologies as a way to achieve the end goal of the industry, same functionality, same signal, smaller package.

Working in conjunction with the TNO, the Netherlands organisation for applied scientific research we designed a new range of mass flow and pressure meters/controllers built around MEMS technology. This allowed us to offer solutions with a footprint of 0.75’’, halving the footprint and offering ultra-compact flow controllers.

This has given our customers:

  • Compact assembly ensuring space efficiency
  • Analog or digital communication
  • Top mount modules, easily accessible
  • Pre-testing ‘’Plug and Play’’ manifold assemblies, reducing customer test requirement

To maintain the usefulness of the new instrument you have to have the same functionality. Along with a sensor on a chip, we need a new, smaller control valve, filter options and a smaller pneumatic shut-off valve. To save even more space and build time, customers requested a down-ported version.

The final addition that makes full use of the space saving created by the addition of new technology was to create a manifold system where a customer can design a number of flow channels into a manifold, all well within the internal space limitations they have for their instrument.

IQ+ Manifold Solution

This is one of the key themes of our blogs and it is referred to time and again. The Solutions based approach, ending up with a bespoke solution not a standard product with compromises. Innovation in technology must be driven by the customer. If you do not think that a standard flow or pressure solution will meet your needs then let us know and challenge our team, we will be your low flow fluid handling specialist.

Check out our smallest mass flow and pressure meter/controller

Check out our Ultra Low Flow Coriolis Instruments